

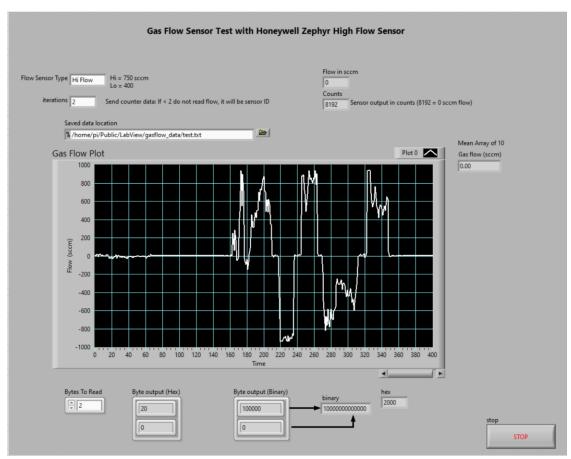
Detector Support Group

We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2020-09-02

Summary

Hall A – SoLID Magnet Controls


<u>Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, Tyler Lemon, Marc McMullen</u>

- Reviewing latest version of motor controller relay PCB
- Wrote PLC code to control heaters installed at the warm end section of the current leads
 - **★** Added code to readout two temperature sensors
 - * PLC logic opens and closes relays to enable and disable heaters based on the temperature readout in each current lead
- Completed JT Valve Page HMI screen

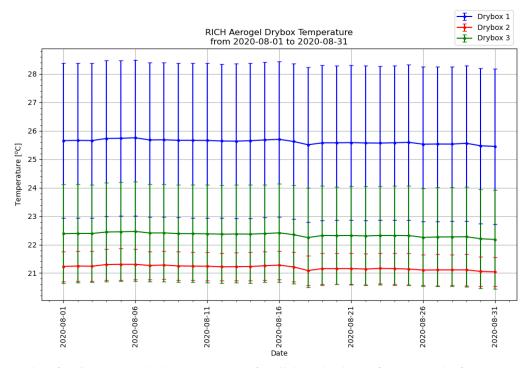
Hall A – GEM Detector Gas System

Peter Bonneau, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, Marc McMullen

- Received I²C multiplexer board, which reads out gas flow sensors
- Completed LabVIEW VI to readout flow from Honeywell gas flow sensor

Screenshot of LabVIEW gas flow sensor test VI used for the GEM flow sensor readback software.

Detector Support Group


We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2020-09-02

Hall B - RICH

Tyler Lemon

- Analyzed aerogel storage dry-box environment with Python
 - **★** Program calculates average temperature and humidity by day and plots results
 - * Standard deviation for dry-box 2 is much lower than that for dry-boxes 1 and 3 because dry-box two is poorly sealed and the temperature doesn't rise much during each drying cycle

Plot of RICH aerogel dry-box temperature for all three dry-boxes for the month of August.

HDice – fsNMR Program

Peter Bonneau, Tyler Lemon

- Reviewed the program requirements for the fsNMR based on Zurich UHFLI Lock-in Amplifier
- Implemented feature that takes screenshot of LabVIEW front panel of fsNMR program after a run

Hall C - NPS

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, George Jacobs, Mindy Leffel, Tyler Lemon

- Seven hundred and twenty of 1100 high voltage divider cables fabricated
- Analyzing HV (with load) stability test current and voltage data
- Continued voltage stability testing (with load) using EPICS
- Developing CAEN HV trip test

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2020-09-02

 Generated Channel Assignment spreadsheet showing all of the PVs assigned to each PMT

	SLOT 0		SLOT 1		SLOT 2	
CHANNEL#	PMT LOCATION	PV	PMT LOCATION	PV	PMT LOCATION	PV
0	18:-15	hvcaentest2:00:000:VMon	18:-14	hvcaentest2:01:000:VMon	18:-13	hvcaentest2:02:000:VMon
		hvcaentest2:00:000:IMon		hvcaentest2:01:000:IMon		hvcaentest2:02:000:IMon
		hvcaentest2:00:000:Status		hvcaentest2:01:000:Status		hvcaentest2:02:000:Status
		hvcaentest2:00:000:V0Set		hvcaentest2:01:000:V0Set		hvcaentest2:02:000:V0Set
		hvcaentest2:00:000:10Set		hvcaentest2:01:000:I0Set		hvcaentest2:02:000:10Set
		hvcaentest2:00:000:Trip		hvcaentest2:01:000:Trip		hvcaentest2:02:000:Trip
		hvcaentest2:00:000:RUp		hvcaentest2:01:000:RUp		hvcaentest2:02:000:RUp
		hvcaentest2:00:000:RDWn		hvcaentest2:01:000:RDWn		hvcaentest2:02:000:RDWn
		hvcaentest2:00:000:Pw		hvcaentest2:01:000:Pw		hvcaentest2:02:000:Pw
		hvcaentest2:00:000:SVMax		hvcaentest2:01:000:SVMax		hvcaentest2:02:000:SVMax
1	17:-15	hvcaentest2:00:001:VMon	17:-14	hvcaentest2:01:001:VMon	17:-13	hvcaentest2:02:001:VMon
		hvcaentest2:00:001:IMon		hvcaentest2:01:001:IMon		hvcaentest2:02:001:IMon
		hvcaentest2:00:001:Status		hvcaentest2:01:001:Status		hvcaentest2:02:001:Status
		hvcaentest2:00:001:V0Set		hvcaentest2:01:001:V0Set		hvcaentest2:02:001:V0Set
		hvcaentest2:00:001:I0Set		hvcaentest2:01:001:I0Set		hvcaentest2:02:001:I0Set
		hvcaentest2:00:001:Trip		hvcaentest2:01:001:Trip		hvcaentest2:02:001:Trip
		hvcaentest2:00:001:RUp		hvcaentest2:01:001:RUp		hvcaentest2:02:001:RUp
		hvcaentest2:00:001:RDWn		hvcaentest2:01:001:RDWn		hvcaentest2:02:001:RDWn
		hvcaentest2:00:001:Pw		hvcaentest2:01:001:Pw		hvcaentest2:02:001:Pw
		hvcaentest2:00:001:SVMax		hvcaentest2:01:001:SVMax		hvcaentest2:02:001:SVMax

Screenshot of portion of channel assignment list showing all PVs assigned to a particular PMT.

- Developing NPS ComCal CSS-BOY screen
 - **★** Creating input screens for each PMT
- Developing documentation and project timeline for the design, construction, and testing of the Environment Monitoring/Interlock system
- Investigating sensors and supporting instrumentation capable of withstanding high radiation while maintaining their operational parameters
 - * Negative temperature coefficient (NTC) thermistors used at the Large Hadron Collider to measure temperature
 - **★** NTCs have a precision better than 0.01°C

DSG R&D

Tyler Lemon

- Implemented improved version of Test OPI Creator program
 - * New version creates one output screen with both local PV test screen and test controls
 - * Takes advantage of CSS capabilities to add widgets from its internal library
 - **★** Works for any widget type on a CSS-BOY screen

DSG - Website Design

Mary Ann Antonioli, Peter Bonneau, Aaron Brown

• Continued updating all DSG technical documentation sections